
Theoret. chim. Acta (Berl.) 14, 363--369 (1969) 

A 2pn, 3dn Valence Bond Wave Function 
for the 1Blu State of Ethylene 

AAGE E.  HANSEN 

Department of Physical Chemistry, H. C. Orsted Institute, University of Copenhagen 
Copenhagen, Denmark 

Received February 14, 1969 

A 2pTr, 3d~ valence bond wave function for the lowest 1Blu state  of the z~-system of ethylene is 
variationally optimized with respect to the atomic orbital exponents using a non-empirical n-approxi- 
mation. The resulting energy compares favourably with previous calculations and leads to a satis- 
facto~'y value for the lowest 1A l g -  1B1, transition energy. The optimized exponent for the 2pzr orbital 
is close to the Slater value whereas the exponent for the 3dn orbital is found to be nearly hydrogenic. 
The implications of this result are discussed in some detail. 

Fiir den tiefsten 1B1,-Zustand des 7t-Elektronensystems des A.thylens wird nach der Variations- 
methode eine 2pn, 3dn-Valenzbindungs-Wellenfunktion beziiglich der Orbitalkoeffizienten optimiert, 
wobei eine nicht-empirisehe n-Approximation zugrunde gelegt wird. Die berechnete Energie stimmt 
gut mit den Ergebnissen vorausgegangener Rechnungen iiberein. FiJr den tiefsten 1A~g- 1B~,-(Jber- 
gang ergibt sich ein befriedigender Energiewert. Der optimierte Orbitalkoeffizient fdr das 2pn-Orbital 
stimmt gut mit dem nach der Slaterschen Regel bestimmten Koeffizient [iberein, w~ihrend man fiJr 
den 3dTz-Orbitalkoeffizienten einen Wert findet, der dem des Wasserstoffs ~ihnlich ist. 

Une founction d'onde V,B.(2p~, 3d~) est optim~e pour l'6tat XB1, d'aethylen. L'energie calcul6 
aussi que l'energie de transition la plus basse ~A~o- XBx~ est en bon accord avec des valeurs connues. 

1. Introduction 

A ls, 2pa valence bond wave function has recently [1, 2] been employed with 
some success for the B 1 S+ state of the hydrogen molecule. The analogy between 
the hydrogen molecule and the n-system of ethylene suggests a similar treatment 
of the lowest X B 1,(V) state of ethylene using a 2p n, 3dn valence bond wave function. 
In this note we shall report the results of such a calculation in which the atomic 
orbital exponents for the 2pn and 3dn orbitals in the n-system are variationally 
optimized. The calculations are performed entirely within the conventional non- 
empirical n-approximation [3] with neglect of exchange interactions between 
core-electrons and n-electrons. 

The low-lying excited states of ethylene have been extensively studied (see 
Refs. [3, 4 and 5] for bibliographies). The treatment which is most akin to the 
present is the molecular orbital calculation by Huzinaga [6] where the 2pn atomic 
orbital exponents in the bonding and antibonding molecular orbitals are used 
as independent variational parameters. For the ~B~, state this leads to an unex- 
pectedly low value for the orbital exponent in the antibonding molecular orbital. 
The figure quoted [6] is 0.4 (compared to 1.6 in the bonding orbital), however, 
computational difficulties did not allow a determination of the actual energy 
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minimum which apparently occurs at an even lower value of the orbital exponent 
(see footnote 9 of Ref. [6]). 

The present valence bond approach leads to a rather satisfactory agreement 
with the experimental transition energy, but again at the expense of producing a 
very diffuse atomic orbital, namely a nearly hydrogenic 3dr~ orbital. 

2. Wave Function and Energies 

The Hamiltonian operator for the two mobile electrons in the planar ethylene 
molecule can in the ~-approximation [3] be written (in atomic units): 

2 

= M~cc + ~ Vs(i ) (1) 
i=1 

where 

11 Xecc = - 5-  v ? +  Vc(i) + - -  (2) 
i=1 Y12 

gc(/) represents the coulomb potential energy of electron i in the field of the two 
carbon cores, each consisting of a nuclear core of charge + 4 and three electrons; 
Vn(i ) is the coulomb potential due to the four hydrogen atoms. Each of the core- 
electrons is assigned to a simple Slater orbital. In the case of a carbon atom these 
core orbitals are a (nodeless) 2s orbital and two 2p orbitals in the molecular 
plane all with orbital exponent 1.59; in the hydrogen atom the electron is assigned 
to a ls orbital with exponent 1.0. Since exchange potentials from the core are 
neglected the operator (2) becomes independent of the state of hybridization of 
the carbon orbitals. The explicit separation of the total ~-Hamiltonian, Eq. (1), 
into a carbon-carbon part and a hydrogenic part is made for computational 
reasons (vide infra). 

In the present approach the trial wave function for the lowest *B,u state is a 
valence bond function constructed from 2pro and 3&t atomic orbitals on the two 
carbon atoms. The proper combination of these orbitals which transforms as 
*B~u is: 

7 t = N[pa(1  ) db(2 ) + db(1 ) pa(2) -- d~(1) pb(2) - pb(1) <(2)] (3) 

where we have omitted the two-electron spin-function for the singlet state. N is 
a normalisation factor and the orbitals are: 

Pa = ((~s/r0~ r~ sin0a cosq~ e -~:~ 

2 sin0a COS0a cosq~ e -~" r~ d a = (2~7/3n) ~ r a 

with similar expressions for the orbitals centered on atom b. The phases in Eq. (3) 
correspond to local co-ordinate systems with z-axes pointing towards each other. 
We have used the same molecular geometry as  Huzinaga 1-63 in order to allow 
direct comparison of the results 1 

The optimal values of the orbital exponents ~p and ~a are found by minimizing 

the energy Ecc = ( ~  I afccl ~ ) / ( ~ 1  ~> (4) 

1 Carbon-carbon distance equal to 1.353 A, carbon-hydrogen distance equal to 1.071 A. 
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with respect to these two non-linear parameters. The neglect of the potentials 
due to the four hydrogen atoms in the optimization is dictated by want of computer 
programs which allow an accurate calculation of three-center integrals involving 
3d-orbitals. All the remaining one- and two-center integrals in (4) are calculated 
exactly with the DIATOM program of Corbato and Switendick [7] for a syste- 
matic variation of the two orbital exponents. Table 1 shows the total energy of 
the two z-electrons according to Eq. (4) as function of the orbital exponents in 
the vicinity of the minimum ((v = 1.55 and (d = 0.32). The resulting minimum 

Table  1. Energy of the 2pg, 3dTz wave function as function of the orbital exponents" 

~ v  1.50 1.55 1.60 

0.20 - 2 0 . 1 6 4  
0.25 - 20.270 b 

0.30 - 2 0 . 3 0 1  - 2 0 . 3 1 7  
0,32 - 20.306 - 20.321 
0,34 - 20.304 - 20.317 
0,36 - 20.307 
0.38 - -20 .290 

" All  energies  in eV. 

- 2 0 . 2 8 5  
- 20.289 
- 20.285 

b The s tabi l i ty  of the results  has  been checked by ca lcu la t ing  this value twice, first wi th  193 points  
of in tegra t ion  in the numer ica l  ca lcu la t ion  of the integrals  y ie lding - 20,2699 eV. and  subsequent ly  
wi th  385 poin ts  y ie lding - 20.2697 eV. 

energy is - 20.321 eV which is a slight improvemen t over Huzinaga's - 20.095 eV 
(also without the hydrogenic potentials) [6]. 

It is important to note that the procedure leads to a definite extremum albeit 
a shallow one. We emphasize this point since Yaris, Moscowitz, and Berry [5] 
have recently warned against the use of very expanded atomic orbitals in the 
basis set because of the danger of generating unbound functions. The accuracy 
of the present computations is tested as explained in a footnote to the table and 
the existence of a definite minimum shows that the optimized function does 
indeed represent a bound state. 

The effect of the four hydrogen atoms can now be taken into account by 
simple first order perturbation using Vn(i ) as the perturbation operator. The 
necessary approximations in the integral evaluation are outlined in the appendix. 
The resulting 7c-electron energy is -21.618 eV which is again slightly lower than 
Huzinaga's -21.512 eV (including hydrogen potentials), however, the approxi- 
mations in the calculation of the three-center integrals are somewhat different in 
the two cases (see appendix). 

Table 2 summarizes the results of the present approach and of the molecular 
orbital calculations by Parr and Crawford [8] and by Huzinaga [6]. The tran- 
sition energies quoted for the present 2pTz, 3d~ valence bond function are obtained 
by use of the appropriate ground state energies from Huzinaga's calculation. It is 
observed that the computed transition energy is in rather satisfactory agreement 
with the experimental value when the hydrogenic potentials are taken into account. 
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Table 2. Comparison of calculated energies" 

Parr and Huzinaga [6] Present calculation 
Crawford [8] without Vn with V n without Vn with Vn Experimental 

1Alg(N ) -26.413 -28.788 
1Blu(V ) -20.095 -21.512 -20.321 -21.618 
E(N-  V) 11.5 6.32 7.28 6.09 b 7.17 b 7.6 

" All energies in eV. 
b These transition energies are calculated with the appropriate ground state energies from Huzi- 

naga's calculations. 

3. Discussion 

The classic non-empirical ~z-approximation treatment of the low-exited states 
of ethylene is the Parr  and Crawford [8] molecular orbital calculation in which 
the basis orbitals are taken as strict Slater orbitals. Their wave function for the 
1B1, state is therefore purely ionic with no variational parameters, and it is charac- 
teristic that the calculation grossly overestimates the energy of this state and hence 
the lowest singlet-singlet transition energy (see Table 2). In Huzinaga's  calculation 
[6] the orbital exponents in the bonding and antibonding molecular orbitals are 
treated as independent, nonlinear variational parameters. The calculated singlet- 
singlet transition energy is thereby improved to virtual agreement with the 
experimental value. However, the resulting orbital exponents in the two molecular 
orbitals turn out to differ strongly (see the introduction). 

The present 2pro, 3drc wave function leads to nearly the same energy as Huzi- 
naga's molecular orbital function, and the two approaches have furthermore one 
feature in common,  namely the appearance of very diffuse atomic orbitals (respec- 
tively a 3drc orbital with ~d = 0.32 and a 2pro orbital with ~v = 0.4). These orbital 
exponents are curiously close to the pure hydrogenic values which means that 
both approaches assign a high degree of Rydberg character to this state. Further- 
more, the effect of having two very different orbital exponents in a two-electron 
wave function is that one electron stays near the nuclei while the other moves 
further out, so to speak. A major  part  of the improvement  (relative to Parr 's  and 
Crawford's results) which is found in the present treatment and by Huzinaga is 
therefore undoubtedly associated with an in-out (or vertical) type correlation of 
the electronic mot ion 2. 

The left-right (or horizontal) correlation of the electrons can be estimated by 
use of the similarity between the 1Ba, state of the ethylenic n-system and the 
1 ~  u s t a t e  of the hydrogen molecule. In a previous communication [2] we have 
analyzed the hydrogenic counterparts to the three types of wave functions con- 
sidered here for the 1B~u state. This analysis placed particular emphasis on the 
covalent and/or ionic nature of the wave functions (which is just another way of 
saying electron correlation). The results of the analysis are contained in Fig. 1 
of Ref. [2] which shows that the ls, 2pa valence bond function for the 1 + Xu state 
leads to a highly ionic electron distribution in spite of its covalent construction. 

2 It should be noted that we use the word correlation in its literal sense, no reference to a Hartree- 
Fock scheme is implied. 
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The important prerequisite for this result is the low value of the 2pa orbital 
exponent which means that a 2pa  orbital centered at one of the hydrogen nuclei 
will have its radial maximum in the vicinity of the other nucleus. In the present 
2pn, 3dn valence bond function we encounter essentially the same feature, namely 
the diffuse 3dn orbital. By analogy, the electron distribution predicted by the 
optimized wave function (3) will therefore be expected to be largely ionic again 
in contrast to its formally covalent appearance. 

Table 3. Overlap integrals between 1BI.(V ) wave functions 

A B C 

A 1.00 0.37 0.30 
B 1.00 0.78 
C 1.00 

A: Parr and Crawford [8] (molecular orbital). 
B: Huzinaga [6] (molecular orbital). 
C: 2pn, 3dn valence bond (Eq. (3)). 

We shall terminate this section by considering the overlap integrals between 
the three types of IBlu wave functions we have been discussing. The values of 
these overlap integrals are given in Table 3 which shows that the present valence 
bond function and Huzinaga's function have an overlap of about 80 %. Since the 
two wave functions lead to very nearly the same expectation value for the energy 
we can take the remaining 20 % as a crude estimate of the magnitude of the deviation 
from the lowest exact solution (of 1B1, symmetry) for the n-Hamiltonian (1). 

4. Concluding Remarks 

The results of the preceding sections are obtained within the pure n-approxi- 
mation which means in particular that excitations of the core electrons have been 
neglected completely. Recent work on the near ultra-violet spectrum of ethylene, 
especially by Yaris, Moscowitz, and Berry [5], has shown that the details of the 
spectrum can be understood only by taking the core-peel transitions explicitly 
into account. However, the main component of the band (from an intensity point 
of view) can still be identified with the ~B1, 7z-electron state. The fact that the 
energy of this transition is so well accounted for in the present calculation supports 
Huzinaga's claim [6] that a large part of the inaccuracies of previous non-empirical 
n-electron calculations is associated with the choice of too crude a wave function 
and not with inherent errors in the z-model. A small number of non-linear varia- 
tional parameters seems particularly expedient for an improvement of the wave 
function. 

Appendix 

The influence of the hydrogen atoms on the ~t-electron energy is calculated by 
first order perturbation theory which gives an energy contribution of 

AEH -= (~1  Vr~(1) + VH(2) I ~ > / ( ~  } ~ )  - 2 (~ ' l  V~(1) I t / '>/(~ I g ') .  (A.1) 
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The four hydrogen atoms will for symmetry reasons give identical contributions 
to AEH in which case Eq. (A.1) can be written: 

AEH= S ( T  I VI(1) I T ) / ( ~  I T)  (A.2) 

where 1/1 (i) is the coulomb potential due to the nucleus and is-electron of hydrogen 
atom 1 : 

- - -  + (ls)~(/) d v j .  V~(i) = rli 

Expansion of the energy integral in Eq. (A.2) by use of the wave function (3) 
gives an expression containing the two-center integrals: 

(Pal V~ [p,) 

(da ] Vl I da) 

plus the corresponding terms for 
integrals: 

(Pa] 171 ]Pb) 

(dal Vl l db) 

(pa I v~ I db) 

(do l v~ I pb) 

= f  pa(1) V~(1) p,(1) dOl, (A.3a) 

= f  d,(1) Va(1) da(1) dye, (A.3b) 

the orbitals on atom b, and the three-center 

= f  p,(1) VI (1) pb(1) dr1, (A.4a) 

= f  d,(1) V1 (1) db(1) dye, (A.4b) 

= f  pAD V~ (1) db(1) dr1, (A.4c) 

= f  4(1) Vt(1) pb(1) dr1. (h.4d) 

The three-center integrals represent the electrostatic energy of a two-center 
charge-distribution X,(1))~b(1) in the field of a hydrogen atom. These integrals 
can be evaluated by making the following approximation for the charge-distri- 
bution: 

Za(1) Zb(1) = 2aZa(1) Za(1) + 2bZb(1) Zb(1) �9 (A.5) 

The best values for the numerical coefficients 2a and 2b are determined by requiring 
that the total electric charge and the electric dipole moment of the charge-distri- 
bution be conserved in the approximation [9]. If the orbitals are equivalent, as in 
Eqs. (A.4a, b), the center of gravity of the distribution falls halfway between the 
centers and the result is obviously 2a = 2b which gives the familiar Mulliken 
approximation [-10]: 

1 
p,(1) pb(1) = ~- (Pa] Pb) [Pa(1)Pa(1) + pb(1)iVb(1)] (i.6) 

and similarly for the distribution da(1) rib(l). 
In the case of the non-equivalent orbitals, in Eqs. (A.4c, d), the center of gravity 

of the distribution will be located close to the atom where the 2p~ orbital is 
centered. This follows from the fact that the 3dr~ orbital will have a nearly flat 
radial function in the region of the neighbouring 2pu orbital (due to its low orbital 
exponent). Following Dahl and Ballhausen [11] we shall accordingly use the 
approximations 

Pa(1) db(1) = (Pa] db) p,(1) p,(1), (A.7a) 

pb(1) da(1) = (pblda) Pb(1) Pb(1), (A.7b) 
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where the conservation of the dipole moment is only approximately fulfilled. 
In the notation of Dahl and Ballhausen [-11] the charge distributions in Eqs. (A.6) 
and (A.7) are termed respectively class I and class II distributions. 

Eqs. (A.6) and (A.7) allow a reduction of the integrals (A.4) to the integrals 
(A.3) and the perturbation energy A E n can therefore be expressed solely in terms 
of overlap integrals and the two-center integrals (A.3). These integrals are calcu- 
lated exactly by the D I A T O M  program [8] and the result is A E n = -1.297 eV 
(Table 2). 
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